“兄弟,提醒你一句,台上那位也是本科生。好像大二在读哦!”
……
台上的乔泽没有理会台下那一阵阵的喧哗声。
只是在心底默默等待着十分钟过去。
然后拿起了笔,走到了第一块黑板前。
现场的摄像机也第一时间开始跟着乔泽移动,并将乔泽走向的黑板投影到了大屏幕上。
否则的话,除了前五排的人,后面没人能看得清楚板书的内容。
“杨-米尔斯理论描述了规范场的动力学,具体表现为规范场的场强张量满足的方程,想要直接求解是极为困难的,不管是现有的数学工具,又或者我之前证明杨-米尔斯方程解存在性的切分法,都不足以完整这个任务,所以只能另辟蹊径。
为此,我设计了一种比较特殊的代数结构,我将之命名为超螺旋空间代数。为了能够顺利求解,我所做的第一步是在超螺旋空间代数中重新解释规范场的动力学。
所以接下来我需要大家理解这几个基础概念,超螺旋规范协变导数、规范场的超螺旋场强张量、空间规范场的源项、跟几个重要的仅在超螺旋空间生效的曲率参数……”
没有刻意的让现场安静下来,当乔泽走到黑板上开始板书,嘴里开始介绍他最新的研究成果开始,嘈杂的现场便立刻安静了下来,所有人的目光都聚集在那块大屏幕上。
尤其是前排的那些大佬们……
在这一刻,有种大脑炸裂的感觉!
果然!
是新的数学!
当然这才显得合理。
因为任何已知的数学工具,一众被这个命题所吸引的数学家们早已经尝试过了,根本不可能解决这个问题。
但超螺旋空间代数?
这个跨度是不是太大了?
“好了,理解了这些数学概念,现在我们就可以将杨-米尔斯方程进行变化了,就好像大家所熟悉的傅里叶变化。这一步非常简单,原杨-米尔斯方程在超螺旋代数空间里的变化式如下:
[d_\muf{\muu}+\_\mu=ju]。”
内容未完,下一页继续阅读
本章未完,请点击下一页继续阅读